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Measurements of relaxation times in proteins are a valu- simple approach is to measure the efficiency of a sampling
pattern applied to several different values of T by theable source of information about molecular motions in bio-

logical macromolecules such as proteins (1–3) . Relaxation reliability achieved in the worst case. Furthermore, it is
easier not to consider individual values of T directly, buttimes are determined by sampling a relaxing magnetization

after various delay times, and it is important to choose these simply optimize the sampling pattern for all T values in
the range between the largest (T max ) and smallest (T min )delay times carefully in order to obtain accurate values. Here

I describe a strategy for determining the optimal pattern of values considered.
When only two sample points are used, the optimal sam-sampling times for the system under study.

pling patterns for a range of T values are easily determinedThe optimal sampling patterns for measuring a single re-
(7) . For narrow ranges (Tmax É Tmin) , it is best to placelaxation time can be determined using Cramér–Rao lower
one point at zero time, and the second point at 1.11 TGM,bounds (4–6) , as described in (7) , and the essential results

are summarized below. The time constant, T , of an exponen- where TGMÅ
√
TmaxTmin is the geometric mean of the extreme

tially decaying function values of T for the range under consideration. For wider
ranges, this second point should be placed at a slightly earlier
sampling time, 1.11 T opt . When Tmax Å 5 Tmin , this optimums(t) Å Ae0t /T [1]
time is T opt Å 0.9 TGM, and the worst-case reliability (which
occurs at T Å Tmax and T Å Tmin) is 69% of the best-case

can be determined by sampling the intensity at two time reliability (which occurs at T Å T opt ) .
points, t1 and t2 . The optimal sampling pattern for T is that With larger numbers of sampling points, the optimal sam-
which allows T to be determined with the greatest reliability pling patterns are more complicated. For narrow ranges of
(defined as the inverse of the fractional error in T ) , and the T , the optimal pattern remains equivalent to the optimal
optimal locations for the two sampling points are to place sampling pattern for some value, T opt , which is approxi-
one at the beginning (t1 Å 0), and the other at t2 Å 1.11 mately equal to, but slightly smaller than, TGM. For wider
T . With larger numbers of sample points, the results are ranges, it may be more efficient to place the sample points
similar: it is always best to place some of these sample points at several different times, and this can be explored numeri-
at zero time, and the rest at some optimal time, proportional cally. As the optimization is over two or more variables, it
to T . If the number of sample points is very large, the optimal is necessary to use multidimensional search routines. Several
pattern is to place 22% of the points at t Å 0 and 78% at such routines are available (8) , but many ‘‘fast’’ search
t Å 1.28 T , or more simply and almost as effectively, one routines are unstable when attempting to maximise worst-
point at t Å 0 and four at t Å 1.30 T . case reliabilities, and the best results were achieved with the

The choice of optimal sampling times for measuring slow but reliable AMOEBA algorithm (8) . Furthermore, it is
relaxation times in proteins is more complicated, as differ- necessary to perform all numerical calculations using at least
ent residues exhibit different relaxation behavior and so double-precision arithmetic, and in some cases, it is neces-
have their own optimal sampling patterns. It is not possi- sary to use quadruple precision.
ble to choose an sampling pattern which is optimal for all The results for three sample points are shown in Fig.
the different values of T , and it is necessary to choose 1. For narrow ranges, it is best to place one sample point
a compromise pattern which is reasonably good for all at zero and the other two points at the same time, 1.19
residues. In this case, the optimal sampling pattern will T opt . For very narrow ranges, T opt É T GM , but for wider

ranges T opt is slightly smaller as before. When T max §depend on how this compromise is made. A particularly
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close to the optimal time if the three samples are constrained
to lie together. Furthermore, the quality of the results is only
weakly dependent on the detailed values of the sampling
times as long as their geometric mean lies close to the appro-
priate value. For this reason, it is difficult to locate the opti-
mal sampling times exactly, and it is necessary to use qua-
druple-precision arithmetic to obtain accurate results, espe-
cially close to the two bifurcations.

With five sample points, it is not possible to locate the
optimal sample times exactly, even using quadruple-preci-
sion arithmetic. The approximate results which can be ob-
tained suggest that a bifurcation occurs when Tmax § 2.75
Tmin , much as expected. A second bifurcation, however, is
not observed, at least for the ranges considered (Tmax £ 5
Tmin) . In this case, the optimal sampling pattern involves
one point at zero and two points at each of two differentFIG. 1. Optimal sampling pattern for a range of values of T between
sampling times, and this pattern (which has only two vari-Tmin and Tmax with three sample points. One point should be placed at zero,
able parameters) can be optimized with comparative ease.and the other two should be placed at multiples of TGM Å

√
TminTmax , as

indicated by the solid lines. For narrow ranges, the two sample points The results of this approach are shown in Fig. 3. When Tmax

should be placed together, while for larger ranges they should be placed at Å 5 Tmin , the optimal sample times are 0.60 TGM and 2.31
two different times. The dashed line indicates the optimum location for TGM. This result, which was previously discovered by an ad
these two points if they are constrained to lie together.

hoc search process (7) , is now seen to be a member of a
more general family.

Next it is necessary to consider the overall quality of3.15 T min , the plot bifurcates, and it is no longer optimal
to keep the two sample points together. As the range is these optimized patterns. Following earlier work ( 7 ) , the

efficiency of a sampling pattern is defined as the ratio ofincreased further, the two sample times move further apart
so that when T max Å 5 T min they lie at 0.53 T GM and 2.11 the worst-case reliability to the maximum reliability

which can be achieved in the same time using a samplingT GM . Interestingly, the geometric mean of these two sam-
ple times lies close to the optimal sampling time if the pattern optimized for a single value of T . The results for

patterns with two, three, and five sample points are showntwo samples are constrained to occur at the same time
(1.06 T GM ) . in Fig. 4. For a two-point sample pattern, the efficiency

is never higher than 88% and falls off rapidly as theIn any multidimensional search, there is a danger that
the algorithm will not locate the true global maximum but width of the distribution of T values is increased. A three-

point pattern is more efficient for narrow ranges (up torather some lesser local maximum. This can be guarded
against by running the search algorithm with several dif-
ferent start points and also by performing crude searches
involving the calculation of the function at many different
points on an evenly spaced grid. Checks of this kind did
not locate any better maxima, and it is probable that the
maxima which have been located are the true global max-
ima, and so do indeed correspond to optimal sampling
patterns.

With four sampling points the results are more compli-
cated, as shown in Fig. 2. For narrow ranges, the optimal
pattern comprises one point at zero and three at 1.25 T opt

as expected (7 ) . When T max § 2.92 T min , the plot bifur-
cates, and two sample points should be placed at an earlier
time, while the last point should be placed at some later
time. Finally, when T max § 3.51 T min , the plot bifurcates
again, and all three points should be placed at different
times. For T max Å 5 T min , these times are 0.52 T GM , 1.09
T GM , and 2.69 T GM . FIG. 2. Optimal sampling pattern for a range of values of T with four

sample points. For details, see the legend to Fig. 1.As before, the geometric mean of these three times is
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optimal five-point linear sampling pattern involves placing
the five sample times between 0 and tmax Å 1.93 TGM, and
has an efficiency of 87% (the optimal five-point sampling
pattern is almost perfectly efficient) . As the range of T val-
ues is increased, the optimal value for tmax increases very
slightly, and the efficiency is decreased. For moderate ranges
of T (Tmax É 3 Tmin) , the efficiency of the optimal five-point
pattern decreases sharply, and the optimal linear pattern is
only slightly less efficient (78%, compared with 80%). For
wider ranges of T , however, the efficiency of the optimal
five-point pattern decreases only slowly, and so this pattern
is increasingly favored over the optimal linear sampling pat-
tern: when Tmax Å 5 Tmin , the optimal five-point pattern has
an efficiency of 75%, while that of the optimal linear pattern
is only 70%.

As discussed in (7) , linear sampling patterns with large
FIG. 3. Optimal sampling pattern for a range of values of T with five

numbers of sample times are significantly less efficient thansample points. For details, see the legend to Fig. 1.
optimized sampling patterns. For narrow ranges of T , the
sample points should be evenly spaced between 0 and tmax

Å 2.02 TGM, resulting in an efficiency of only 74%. For98%) , and the efficiency falls off less rapidly after the
bifurcation as a result of the greater flexibility in placing wider ranges, tmax increases very slightly and the efficiency

is once again decreased: when Tmax Å 5 Tmin , the optimalsample times. A five-point pattern is almost perfectly
efficient for narrow ranges and remains at least 90% effi- linear pattern has an efficiency of only 59%.

In conclusion, it is possible to determine optimal sam-cient as long as T max £ 2 T min . At wider ranges, the
efficiency continues to fall, but remains at least 75% pling patterns for measuring relaxation times in complex

systems such as proteins as long as the range of values ofwhen T max £ 5 T min .
A potential weakness of these optimized sampling pat- T is reasonably narrow. In general, the optimal five-point

pattern, in which the sample times are chosen as shownterns is that they will not be very efficient at detecting
deviations from exponential relaxation which may occur in Fig. 3, is a simple and effective choice of sampling

pattern for systems of this kind. For narrow ranges offor a variety of reasons. Clearly any pattern involving only
two distinct sample times cannot detect such deviations, T , this pattern is significantly more efficient than more

conventional schemes, such as linear sampling, and thesewhile optimized patterns involving three or more sample
times can detect them but may be less sensitive to these alternative schemes should only be used if nonexponential

relaxation is likely to be a problem. For moderately wideeffects than more conventional patterns. In fact, this prob-
lem is less important than it may seem, as it is much
more difficult to detect biexponential relaxation than is
commonly realized: as discussed in (7 ) , it is difficult to
detect biexponential relaxation unless the two time con-
stants differ by at least a factor of two, or the signal-to-
noise ratio is at least 100.

Nevertheless, it is useful to consider some alternative
sampling patterns involving a wide range of different sam-
ple times. A particularly simple sampling scheme is linear
sampling, in which the sample times are spaced evenly
between 0 and some maximum time, tmax . The application
of such sampling patterns to the measurement of a single
relaxation time is discussed extensively in (7 ) , and here I
will only consider linear sampling with five sample times,
which can be conveniently compared with the optimal
five-point pattern, and linear sampling with an infinite
number of sample times, which may serve as a model of
conventional sampling schemes. FIG. 4. Efficiency of various sampling patterns as a function of the

width of the range of values of T .For a narrow range of values of T (Tmax É Tmin) , the
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